399/Eco. 22-23/31613

B.Sc. Semester-III Examination, 2022-23 ECONOMICS [Honours]

Course ID: 31613 Course Code: SH/ECO/303/C-7

Course Title: Mathematical Methods in Economics-II

Time: 2 Hours Full Marks: 40

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

UNIT-I

1. Answer any **five** of the following questions:

 $2 \times 5 = 10$

- a) Define difference equation with any one suitable example.
- b) Explain the meaning of order and degree of a differential equation with suitable examples.
- c) What is meant by a solution or integral of a differential equation?
- d) Give an example of non-zero sum game.
- e) What are different parts of a Linear Programming Problem?
- f) Write down two basic features of a 'two-persons-zero-sum' Game.

- g) What is meant by Saddle Point in a Game?
- h) If a_{ij} represents the minimum requirement of commodity i per unit of output of commodity j, then state Hawkins-Simon conditions for two industries industry 1 and industry 2.

UNIT-II

2. Answer any **four** of the following questions:

 $5 \times 4 = 20$

a) Solve the following Linear Programming graphically mentioning the feasible region and basic solutions:

Minimize
$$C = 2x + 3y$$

subject to : $5x+5y \ge 20$
and $5x+10y \ge 30$; $x, y \ge 0$

b) State the relationships between Primal and Dual of a Linear Programming model. Write down the Dual of the problem given below:

Maximize
$$Z=4x+7y$$

subject to: $2x+y \le 4$
and $5x+3y \ge 7$; $x, y \ge 0$

write down the assumptions of Leontief's static open Input-Output model.

d) Determine the saddle point of the following game by using maximin and minimax principle as well as by applying dominance principle:

Player A
$$\begin{pmatrix} 12 & 9 & 4 \\ 7 & 5 & 3 \\ 6 & 1 & 3 \end{pmatrix}$$

e) Explain Hurwicz criterion of decision making with the help of the pay-off matrix given below, assuming the probability of occurrence of maximum 0.6 and probability of occurrence of minimum 0.4:

State of Nature

f) Write down the necessary and sufficient conditions for maximization of: $Y=(x_1,x_2)$

If the marginal cost function of a firm is: $MC=4+6x+30x^2$ find its total cost function given total fixed costs as Rs.200.

UNIT-III

3. Answer any **one** of the following questions:

 $10 \times 1 = 10$

Find out the gross output levels of steel and coal in an economy when the technology matrix
 (A) and final demand vector (D) are given below:

	Steel	Coal	Final Demand
Steel	0.4	0.1	50
Coal	0.7	0.6	100
Labour	5	2	

Determine the gross output of the two sectors. Examine whether Hawkins-Simon condition is satisfied or not. Determine the amount of labour required in two sectors. 4+4+2

b) (i) Find out the saddle point and value of the game for the following pay-off matrix:

		Player B				
		\mathbf{B}_{1}	$\mathrm{B}_{\scriptscriptstyle 2}$	\mathbf{B}_{3}	$\mathrm{B}_{\scriptscriptstyle{4}}$	
Player	\mathbf{A}_{1}	1	7	3	4	
A	\mathbf{A}_{2}	5	6	4	5	
	A_3	7	2	0	3	

(ii) Explain the concepts of dominance and Nash Equilibrium. 5+5
